Absorbing boundary conditions for the multidimensional Klein-Gordon equation
نویسندگان
چکیده
منابع مشابه
Analytical solutions for the fractional Klein-Gordon equation
In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
متن کاملTime exponential splitting technique for the Klein-Gordon equation with Hagstrom-Warburton high-order absorbing boundary conditions
Klein-Gordon equations on an unbounded domain are considered in one dimensional and two dimensional cases. Numerical computation is reduced to a finite domain by using the Hagstrom-Warburton (H-W) high-order absorbing boundary conditions (ABCs). Time integration is made by means of exponential splitting schemes that are efficient and easy to implement. In this way, it is possible to achieve a n...
متن کاملSplit local absorbing conditions for one-dimensional nonlinear Klein-Gordon equation on unbounded domain
The numerical solution of the one-dimensional nonlinear Klein-Gordon equation on an unbounded domain is studied in this paper. Split local absorbing boundary (SLAB) conditions are obtained by the operator splitting method, then the original problem is reduced to an initial boundary value problem on a bounded computational domain, which can be solved by the finite difference method. Several nume...
متن کاملAbsorbing Boundary Conditions for the Schrödinger Equation
A large number of differential equation problems which admit traveling waves are usually defined on very large or infinite domains. To numerically solve these problems on smaller subdomains of the original domain, artificial boundary conditions must be defined for these subdomains. One type of artificial boundary condition which can minimize the size of such subdomains is the absorbing boundary...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Sciences
سال: 2007
ISSN: 1539-6746,1945-0796
DOI: 10.4310/cms.2007.v5.n3.a12